

Vectors and coordinates system in space

Vectors in space Introduction

The notion of vectors is introduced mainly in grade 10 class. Same in space.

- ✓ Every two points defined a unique vector
- \checkmark Notation: \overrightarrow{AB} or \overrightarrow{u}
- ✓ Direction (Line of action): (AB)
- ✓ Sense: From A to B
- ✓ Magnitude: $||\overrightarrow{AB}|| = AB$

Introduction

Remarks

$$\checkmark \overrightarrow{AA} = \overrightarrow{0}$$

$$\checkmark \overrightarrow{AB} = -\overrightarrow{BA}$$

 \checkmark $\vec{0}$ is a vector having the same direction as every vector

Introduction

Equal vectors

$$\checkmark \vec{u} = \vec{v}$$

- Same direction
- Same sense
- Same norm

If $\overrightarrow{AB} = \overrightarrow{CD}$, then ABDC is a parallelogram

Introduction

Opposite vectors

$$\checkmark \vec{u} = -\vec{v}$$

- Same direction
- Opposite sense
- Same norm

Collinear vectors

$$\checkmark \vec{u} = k\vec{v} \ k \in \mathbb{R}$$

- Same direction
- If k > 0, same sense If k < 0, opposite sense
- $||\vec{u}|| = |k| \times ||\vec{v}||$

Introduction

Sum of two vectors

$$\checkmark \vec{u} + \vec{v}$$
 is a vector

✓ If ABDC is a parallelogram, then $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ and vice versa

Introduction

Difference of two vectors

Introduction

BSA DE SMATT ACADEMY

Remarks

a, b are two real numbers, \vec{u} and \vec{v} are two any vectors.

$$\checkmark (a+b)\vec{u} = a\vec{u} + b\vec{u}$$

$$\checkmark a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$$

$$\checkmark \ a(b\vec{u}) = (ab)\vec{u}$$

Vectors in space Coplanar vectors

Definition

 \vec{u} , \vec{v} and \vec{w} are three non collinear vectors in the space.

 \vec{u} , \vec{v} and \vec{w} are said coplanar when an arbitrary point O and the three points defined by: $\overrightarrow{OA} = \vec{u}$, $\overrightarrow{OB} = \vec{v}$ and $\overrightarrow{OC} = \vec{w}$ are coplanar: O; A; B and C belong to the same plane.

Vectors in space Coplanar vectors

Remarks

- 1 If \vec{u} , \vec{v} and \vec{w} are coplanar, then exist 2 non zero real numbers a and b such that $\vec{w} = a\vec{u} + b\vec{v}$ (and vice versa)
- 2 To prove that 4 points A, B, C and D are coplanar, it is sufficient to prove that 3 vectors of these 4 points are coplanar.
- 3 If two of the three vectors \vec{u} , \vec{v} and \vec{w} are collinear, then the 3 vectors are coplanar.

Vectors in space Coplanar vectors

Example

System of coordinates Basis

BSA BE SMART ACADEMY

Definition

Any non coplanar triple of vectors form a basis in space.

BSA DE SMART ACADEMY

Definition

Consider the orthonormal system $(0; \vec{i}; \vec{j}; \vec{k})$.

M is any point of the space.

For every point M in the space, we can associate

a triplet (x; y; z) such that: $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$

x is abscissa of M

y is ordinate of M

z is elevation of M

BSA BE SMART ACADEMY

Remarks:

- ✓ M is a point in xy-plane: $z_M = 0$
- ✓ M is a point of xz-plane: $y_M = 0$
- ✓ M is a point on yz-plane: $x_M = 0$
- ✓ M is a point on xAxis: $y_M = z_M = 0$
- ✓ M is a point on yAxis: $x_M = z_M = 0$
- ✓ M is a point on zAxis: $x_M = y_M = 0$

BSA BE SMART ACADEMY

(3,4,5)

Remarks:

The sense of the elevation axis (z'z) is determine by right hand rule.

If we take our right hand and align the fingers with the positive x-axis, then curl the fingers so they point in the direction of the positive y-axis, our thumb points in the direction of the positive z-axis.

Locating a point of given coordinates in space.

Consider the point M(3;4;5)

Step 1: Plot on (x'x) the point of abscissa 3.

Locating a point of given coordinates in Structure Consider the point M(3;4;5)

Coordinates of a point

Locating a point of given coordinates in space.

Consider the point M(3;4;5)

Step 3: Plot on (y'y) the point of ordinate 4.

Locating a point of given coordinates in space.

Consider the point M(3;4;5)

 y'_{-}

Step 4: Draw the parallel line to (x'x) from the previous point.

Locating a point of given coordinates in space.

Consider the point M(3;4;5)

Step 5: Plot the intersection point of the two drawn parallel.

Locating a point of given coordinates in space.

Consider the point M(3;4;5)

We get the point A(3;4;0)

System of coordinates Coordinates of a point Locating a point of given coordinates in space. Consider the point M(3;4;5)(3,4,5)Step 6: Plot the point of elevation 5 on (z'z).

System of coordinates Coordinates of a point Locating a point of given coordinates in space. Consider the point M(3;4;5)

Step 6: complete the parallelogram formed by the points A, O and the previous point on (z'z).

Locating a point of given coordinates in space.

Consider the point M(3;4;5)

We get the point M(3;4;5)

Analytic expressions

Coordinates of a vector.

Consider a vector \vec{u} in an orthonormal system $(0; \vec{i}; \vec{j}; \vec{k})$.

$$\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$$

Consider the two points A and B in an orthonormal system $(0; \vec{i}; \vec{j}; \vec{k})$.

$$\overrightarrow{AB} \begin{vmatrix} x_{\overrightarrow{AB}} = x_B - x_A \\ y_{\overrightarrow{AB}} = y_B - y_A \\ y_{\overrightarrow{AB}} = z_B - z_A \end{vmatrix}$$

$$||\overrightarrow{AB}|| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Analytic expressions

Vector relations.

Consider the vector \vec{u} , \vec{v} and \vec{w} in an orthonormal system $(0; \vec{i}; \vec{j}; \vec{k})$. If $\vec{w} = a\vec{u} + b\vec{v}$ where a, $b \in \mathbb{R}$, then:

$$\begin{cases} x_{\overrightarrow{w}} = ax_{\overrightarrow{u}} + bx_{\overrightarrow{v}} \\ y_{\overrightarrow{w}} = ay_{\overrightarrow{u}} + by_{\overrightarrow{v}} \\ z_{\overrightarrow{w}} = az_{\overrightarrow{u}} + bz_{\overrightarrow{v}} \end{cases}$$

As a result:

```
\checkmark \text{ If } \vec{u} = \vec{v} \text{, then } x_{\vec{u}} = x_{\vec{v}} \text{ ; } y_{\vec{u}} = y_{\vec{v}} \text{ ; } z_{\vec{u}} = z_{\vec{v}}
```

$$\checkmark \text{ If } \vec{u} = a\vec{v} \text{, then } x_{\vec{u}} = ax_{\vec{v}} \text{ ; } y_{\vec{u}} = ay_{\vec{v}} \text{ ; } z_{\vec{u}} = az_{\vec{v}}$$

Analytic expressions

Example

Find the coordinates of \overrightarrow{w} in each case:

$$\mathbf{1} \vec{w} = 2\vec{u} \quad ; \quad \vec{u} = 2\vec{i} + 3\vec{j} - \vec{k}$$

$$\vec{w} = 2\vec{u} = 2(2\vec{i} + 3\vec{j} - \vec{k}) = 4\vec{i} + 6\vec{j} - 2\vec{k}$$

2
$$\vec{w} = -\vec{u} + 3\vec{v}$$
 ; $\vec{u} = 2\vec{i} + 3\vec{j} - \vec{k}$ and $\vec{v} = -\vec{j} + 2\vec{k}$

$$\vec{w} = -\vec{u} + 3\vec{v} = -(2\vec{i} + 3\vec{j} - \vec{k}) + 3(-\vec{j} + 2\vec{k})$$
$$= -2\vec{i} - 3\vec{j} + \vec{k} - 3\vec{j} + 6\vec{k} = -2\vec{i} - 6\vec{j} + 7\vec{k}$$

Analytic expressions

BSA BE SMART ACADEMY

Collinear vectors.

Consider the vector $\vec{u} \& \vec{v}$ in an orthonormal system $(0; \vec{i}; \vec{j}; \vec{k})$. \vec{u} and \vec{v} are collinear vector if: exist a real number $k \neq 0$ such that $\vec{u} = k\vec{v}$

Example 1

$$\vec{u}(2; -3; 4)$$
 and $\vec{v}(10; -15; 20)$
 $x_{\vec{u}} = kx_{\vec{v}}$; $2 = 10k$; $k = \frac{2}{10} = \frac{1}{5}$
 $y_{\vec{u}} = ky_{\vec{v}}$; $-3 = -15k$; $k = \frac{-3}{-15} = \frac{1}{5}$
 $z_{\vec{u}} = kz_{\vec{v}}$; $4 = 20k$; $k = \frac{4}{20} = \frac{1}{5}$
So $k = \frac{1}{5}$ $\vec{u} = \frac{1}{5}\vec{v}$

Then $\vec{u} \& \vec{v}$ are collinear vectors.

BSA BE SMART ACADEMY

Collinear vectors.

Consider the vector $\vec{u} \& \vec{v}$ in an orthonormal system $(0; \vec{i}; \vec{j}; \vec{k})$. \vec{u} and \vec{v} are collinear vector if: exist a real number $k \neq 0$ such that $\vec{u} = k\vec{v}$

Example 2

$$\vec{u}(1;0;-4)$$
 and $\vec{v}(2;-1;5)$
 $x_{\vec{u}} = kx_{\vec{v}}$; $1 = 2k$; $k = \frac{1}{2}$
 $y_{\vec{u}} = ky_{\vec{v}}$; $0 = -1k$; $k = 0$
So k doesn't exist

Then $\vec{u} \& \vec{v}$ are not collinear vectors.

BSA BESMATT ACADEMY

Collinear points.

To show that three points A, B and C are collinear, it is sufficient to show that two vectors from these points are collinear.

Example

```
A(1;-1;2), B(2;0;4) and C(0;-2;0)

\overrightarrow{AB}(1;1;2); \overrightarrow{AC}(-1;-1;-2)

x_{\overrightarrow{AB}} = kx_{\overrightarrow{AC}}; 1 = -k; k = -1

y_{\overrightarrow{AB}} = ky_{\overrightarrow{AC}}; 1 = -1k; k = -1

z_{\overrightarrow{AB}} = kz_{\overrightarrow{AC}}; 2 = -2k; k = -1

So k = -1
```

Then A, B and C are collinear points.

Coplanar vectors.

0 = 2a + 4b (3)

Example

$$\vec{u}(1;-1;2), \vec{v}(2;0;4) \text{ and } \vec{w}(0;-2;0)$$

Exist $a \& b$ such that $\vec{w} = a\vec{u} + b\vec{v}$
 $x_{\vec{w}} = ax_{\vec{u}} + bx_{\vec{v}}$
 $0 = a + 2b (1)$
 $y_{\vec{w}} = ay_{\vec{u}} + by_{\vec{v}}$
 $-2 = -a (2)$
 $z_{\vec{w}} = az_{\vec{u}} + bz_{\vec{v}}$

$$(2)$$
: $a = 1$

(1):
$$0 = 1 + 2b$$
 so $b = -\frac{1}{2}$

Verification:

(3):
$$0 = 2(1) + 4\left(-\frac{1}{2}\right)$$

 $0 = 2 - 2$
 $0 = 0$ true

So
$$a = 1$$
; $b = -\frac{1}{2}$
 \vec{u} , \vec{v} and \vec{w} are coplanar

Coplanar points.

To show that four points A, B, C and D are coplanar, it is sufficient to show that three vectors from these points are coplanar.

Remark

Four points form a tetrahedron means that these points are not coplanar.

BSA BE SMART ACADEMY

Midpoint of a segment.

I is the midpoint of [AB]:

$$\begin{cases} x_I = \frac{x_A + x_B}{2} \\ y_I = \frac{y_A + y_B}{2} \\ z_I = \frac{z_A + z_B}{2} \end{cases}$$

Center of gravity of a triangle

G is the centroid of the triangle ABC:

$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} \\ y_I = \frac{y_A + y_B + y_C}{3} \\ z_I = \frac{z_A + z_B + z_C}{3} \end{cases}$$

System of coordinates Transformation of systems by translation

$$(0; \vec{\imath}; \vec{\jmath}; \vec{k}) \xrightarrow{OO'} (a; b; c)$$

$$(x; y; z) \qquad (x'; y'; z')$$

$$x = a + x' \quad ; \quad x' = x - a$$

$$y = b + y' \quad ; \quad y' = y - b$$

$$z = c + z' \quad ; \quad z' = z - c$$

Find the new coordinates of M(1;-1;3) in the new system $(O'; \vec{\imath}; \vec{j}; \vec{k})$ where O'(2;0;4).

$$x' = x - 2 = 1 - 2 = -1$$
 $y' = y - 0 = -1$ $z' = z - 4 = 3 - 4 = -1$

